Mechanisms of triple-shape polymeric composites due to dual thermal transitions

Qi Ge,* Xiaofan Luo,bcd Christian B. Iversen,bc Patrick T. Mather,bc Martin L. Dunn* and H. Jerry Qi*a

Shape memory polymers (SMPs) are a class of smart polymers that can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, irradiation, moisture, or magnetic field, among others. Among the SMPs developed recently, thermally triggered SMPs are the most widely investigated.8 Compared to shape memory alloys, SMPs are extraordinarily stretchable (up to 1100%).1 have low density, are inexpensive and easier to fabricate, degradable and tailorable.2,3 These advantages allow SMPs to be used in many applications such as microsystem actuation components, recoverable surface patterns, biomedical devices, aerospace deployable structures, and morphing structures.1–3,17–22

For a thermally triggered SMP, a thermomechanical cycle starts by deforming the material at a temperature \(T_H \) above a transition temperature \(T_{\text{Trans}} \). The material is then cooled down to a temperature \(T_L \) below \(T_{\text{Trans}} \), while maintaining the deformed shape. At \(T_L \), the deformed shape is fixed after removal of the external load. This deformed shape is usually termed as the programmed shape or temporary shape. Shape recovery is activated by increasing the temperature to \(T_H \) and the material recovers its initial shape or permanent shape under the driving force of rubber elasticity from an underlying

1 Introduction

Shape memory polymers (SMPs) are a class of smart polymers that can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat,1–5 light,6–14 moisture,15 and magnetic field,16 among others. Among the SMPs developed recently, thermally triggered SMPs are the most widely investigated.17 Compared to shape memory alloys, SMPs are extraordinarily stretchable (up to 1100%),1 have low density, are inexpensive and easier to fabricate, degradable and tailorable.1,2 These advantages allow SMPs to be used in many applications such as microsystem actuation components, recoverable surface patterns, biomedical devices, aerospace deployable structures, and morphing structures.1–3,17–22

For a thermally triggered SMP, a thermomechanical cycle starts by deforming the material at a temperature \(T_H \) above a transition temperature \(T_{\text{Trans}} \). The material is then cooled down to a temperature \(T_L \) below \(T_{\text{Trans}} \), while maintaining the deformed shape. At \(T_L \), the deformed shape is fixed after removal of the external load. This deformed shape is usually termed as the programmed shape or temporary shape. Shape recovery is activated by increasing the temperature to \(T_H \) and the material recovers its initial shape or permanent shape under the driving force of rubber elasticity from an underlying

*Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA. E-mail: qih@colorado.edu
†Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, USA
§Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
□Flow Polymers LLC, 12819 Coit Rd, Cleveland, OH, USA
network of covalent or physical crosslinks. In this thermomechanical cycle, a SMP has two shapes, namely the temporary shape and the permanent shape. Therefore, it is sometimes referred to as a “dual-shape” SMP. A physical mechanism is required to effect the transition between the two shapes – two examples are the glass transition between the rubbery and the glassy states\(^{23-26}\) and the transition between crystals and melts.\(^{27-30}\)

Along with strong interests in dual-shape SMPs, multi-shape SMPs have started to attract increasing attention. To date, there are two approaches to achieve a multi-shape memory effect (m-SME). The first approach requires the SMP to have a wide temperature range of thermomechanical transition. For example, Xie\(^{31}\) recently demonstrated that perfluorosulphonic acid ionomer (PFSA), a thermo-plastic SMP with a broad glass transition temperature range from 55 °C to 130 °C, could show m-SME, if the temperature is increased during recovery in a staggered manner. Using a simple theoretical model, we found that the physical mechanism of this observed m-SME is due to the multiple relaxation modes of macromolecular chains, these relaxation modes being sensitive to temperature.\(^{32}\) At a particular temperature during recovery, some relaxation modes are active (meaning their relaxation time is comparable with the lab time scale), while some other relaxation modes are not (meaning their relaxation time is extremely long as compared to the lab time scale). If the temperature is increased in a staggered manner, the number of active relaxation modes also increases in a staggered manner, leading to the observed m-SME.

The second approach is to use multiple transition temperatures to achieve m-SME, most notably, to use two distinct transition temperatures to obtain the triple-shape memory effect (t-SME). Here, t-SME refers to fixing two temporary shapes and recovering sequentially from one temporary shape to the other upon continuous heating, and ultimately to the permanent shape.\(^{33-36}\) In a typical thermomechanical triple-shape memory cycle (Fig. 1), in Step 1 (S1), the material is initially deformed at a temperature \(T_{H}\), where \(T_{H}\) is higher than two phase transition temperatures (\(T_{\text{Trans} \, \text{I}}\) and \(T_{\text{Trans} \, \text{II}}\)). In Step 2 (S2), the temperature is decreased to \(T_{L1}\) (\(T_{L1} < T_{\text{Trans} \, \text{I}}\)) while maintaining the external load resulting in the deformation in S1. After removal of the external load, in Step 3 (S3), fixation of the first temporary shape at \(T_{L1}\) is revealed. In Step 4 (S4), the sample is deformed further at \(T_{L1}\) (note: this need not be in the same direction or in the same plane as the first deformation.) In Step 5 (S5), the material is cooled to \(T_{L2}\) (\(T_{L2} < T_{\text{Trans} \, \text{II}}\)), while keeping the external load causing the deformation in S4. In Step 6 (S6), after unloading, the secondary temporary shape is fixed at \(T_{L2}\). In Step 7 (S7), as the sample is heated back to \(T_{L1}\), the material recovers into its first temporary shape. In Step 8 (S8), the permanent shape is reached by heating to \(T_{H}\).

Recently, several methods of achieving the t-SME were reported. Bellin and co-workers\(^{37-40}\) developed two different polymer networks to achieve the t-SME. These two network systems are macroscopically homogeneous with two microscopic polymer segments. The two phase transitions are either glass transition of one segment and crystal–melt transition of the other one, or two crystal–melt transitions of two different segments. Xie \textit{et al.}\(^{46}\) reported a different method of achieving the t-SME using a macroscopic bilayer crosslinked polymer structure with two well separated phase transitions. Recently, based on the fabrication of shape memory elastomeric composites (SMECs),\(^{47}\) Luo and Mather\(^{45}\) introduced a new and broadly applicable method for designing and fabricating triple shape polymeric composites (TSPCs) with well controlled properties. In the TSPC, an amorphous SMP (epoxy with \(T_{g} \approx 20–40^\circ C\), depending on the precise composition) works as the matrix providing overall elasticity and provides one phase transition temperature, and non-woven PCL (poly(e-caprolactone)) microfibers produced by electrospinning and incorporated into the matrix provide the other phase transition temperature due to the crystallite–melt transition of PCL (\(T_{m} \approx 50^\circ C\)). Compared with methods reported previously, the approach for fabricating polymeric composites is quite flexible, since one can tune the functional components separately to optimize material properties, opening up the potential to design for a variety of applications.\(^{35}\)

Constitutive models were also developed in the past for SMPs. These models were mainly for dual-shape SMPs, including the early model by Tobushi \textit{et al.}\(^{47}\), the modified standard linear solid model with the Kohlrausch–Williams–Watts (KWW) stretched exponential function by Castro \textit{et al.}\(^{48}\), three dimensional finite deformation models for amorphous SMPs developed by Liu \textit{et al.}\(^{48}\), Qi \textit{et al.}\(^{49}\), Nguyen \textit{et al.}\(^{50}\), Chen and Lagoudas,\(^{39,40}\) and Westbrook \textit{et al.}\(^{41}\), constitutive models...
for crystallizable shape memory polymers were developed by Barot and Rao,54 Westbrook et al.,78 and Ge et al. for SMECs.28 For multi-shape SMPs, Yu et al.32 demonstrated that a multi-branch model can be used to capture the m-SME in SMPs with a broad range of transition temperatures. For the t-SME with dual transition temperatures, to the authors’ best knowledge, no model has been reported to date.

This paper investigates the triple-shape memory behavior of TSPC and presents a one-dimension (1D) model to describe the triple-shape memory behavior. In the model, the macroscopic behavior of the composite depends on two phases the composite is made up of. Each phase of the composite can undergo individual phase transition (the glass transition for the matrix and the crystal–melt transition for the fiber network) and contributes to the macroscopic behavior. The model separately considers the glass transition and crystal–melt transition. This separate treatment allows the material parameters used in the model to be independently identified from experiments. The parameter identification approaches are proposed and the necessary tests are described. The paper is arranged in the following manner: in Section 2, the material is introduced briefly and experimental results including DMA, stress relaxation tests, uniaxial tension tests and triple-shape memory behaviors are presented. Section 3 introduces the 1D model. In Section 4, parameter identification is introduced and, with parameters having been determined by experiments, simulations of stress and stored energy analysis for the triple-shape memory behavior are presented.

2 Materials and thermomechanical behaviors

2.1 Materials

A TSPC was prepared using an epoxy-based copolymer thermoset as the matrix and a poly(ɛ-caprolactone) (PCL) as fiber reinforcements. For the epoxy-based copolymer thermoset system, it consists of an aromatic diepoxide (diglycidyl ether of bisphenol-A or DGEBA), an aliphatic diepoxide (neopentyl glycol diglycidyl ether or NGDE) and a diamine curing agent (poly(propylene glycol) bis(2-aminopropyl) or Jefficient D230).35

In this paper, the mole% ratio DGEBA : NGDE = 30 : 70 or D30N70 was chosen for all tests. The fabrication is similar to that of previously reported shape memory elastomeric composites (SMECs).27,35

2.2 DMA experiments

DMA tests were conducted using a dynamic mechanical analyzer (Q800 DMA, TA Instruments). The epoxy/PCL TSPC (a 11.65 mm × 1.7 mm × 0.43 mm rectangular film) was stretched by a dynamic tensile load at 1 Hz. The temperature was first cooled at a rate of 1 °C min⁻¹ from 100 °C to −50 °C, then after 10 min thermal equilibration at −50 °C, it was heated up to 100 °C at a rate of 1 °C min⁻¹. Fig. 2 shows the tensile storage modulus with temperature. The heating trace and the cooling trace show different features. In the heating trace, it clearly shows two separated thermal transitions, corresponding to the glass–rubber transition of epoxy and the crystal–melt transition of PCL, respectively. As a result, a cascade of three storage modulus plateaus of decreasing magnitude with increasing temperature was observed. The first high modulus plateau (~1.5 GPa) exists below epoxy \(T_g^\text{epoxy} \) attributed to the glassy state of epoxy (Plateau I in Fig. 2). The second moderate modulus plateau (~10 MPa) lies between epoxy \(T_g^\text{epoxy} \) and PCL \(T_m^\text{PCL} \), where epoxy is in the rubbery state but PCL is in the semicrystalline state (Plateau II in Fig. 2). Above PCL \(T_m^\text{PCL} \), there is a low modulus plateau (~2 MPa) (Plateau III, in Fig. 3). Different from the heating trace, during cooling, the rubber–glass transition of epoxy and the melt–crystal transition of PCL are largely merged into one single transition and Plateau II disappears. This is primarily attributed to two close temperature ranges of two transitions, and the supercooling that is inherent to
Stress relaxation tests were conducted using the DMA machine in order to yield the viscoelastic data required by material parameter estimations needed for our modeling. A rectangular TSPC sheet with the dimension of 8.97 mm × 1.71 mm × 0.43 mm was used for tests. Stress relaxation tests were performed at 16 different temperatures evenly distributed from 0 °C to 30 °C, a temperature safely below the melting point of the fiber network. The sample was preloaded by application of a small, 1 × 10⁻³ N force to maintain its straightness. After reaching the testing temperature, it was thermally equilibrated for 30 min. Then a 0.1% strain was applied to the sample and the relaxation modulus was observed for 30 min. Fig. 3 shows the results of stress relaxation for 16 different temperatures. Based on the well-known time temperature superposition principle (TTSP), a relaxation master curve was achieved by shifting relaxation curves to a reference temperature of T_r = 16 °C, with temperature-dependent shifting factors. The relaxation master curve and shifting factors will be reported in Section 4.

2.4 Uniaxial tension tests

The uniaxial tension tests for both the neat epoxy and the TSPC were conducted using the DMA machine. The dimensions of the neat epoxy sample and the TSPC sample were 9.09 mm × 1.8 mm × 1.44 mm and 9.97 mm × 1.97 mm × 0.5 mm, respectively. Both samples were tested at 40 °C and 80 °C, respectively, at the loading rate of 0.5 MPa min⁻¹. The results of uniaxial tensions were used for parameter identification, which will be introduced in Section 4.1.

2.5 Shape memory behavior

Shape memory behaviors were tested on the DMA machine with a 10.69 mm × 2.25 mm × 0.42 mm rectangular film. The t-SME was achieved by following an eight-step-shape-fixing method proposed by Luo and Mather:³⁵ in Step 1 (S1), the material is initially stretched at a stress rate of 0.5 MPa min⁻¹ to a constant load P₁ at a temperature T₁ (T₁ > T¹⁰⁰¹⁺, T¹⁰⁰¹⁻). In Step 2 (S2), the material is cooled down at a rate of 2 °C min⁻¹ to a temperature T₂ (T₂ < T¹⁰⁰¹⁺, T¹⁰⁰¹⁻) while maintaining the load P₁. In Step 3 (S3), it is heated up at a rate of 2 °C min⁻¹ to a temperature T₃ (T₃ > T¹⁰⁰¹⁺, T¹⁰⁰¹⁻). In Step 4 (S4), after unloading, the first temporary shape is fixed at T₃. In Step 5 (S5), the material is stretched at the same stress rate of S₁ to a constant load P₂ (P₂ > P₁) and the material is in a new deformation state. In Step 6 (S6), it is cooled down to T₄, again, while keeping the constant load P₂. In Step 7 (S7), after unloading, the material achieves the second temporary shape at T₄. Finally, in Step 8 (S8), the material is heated up to T₅ and it recovers to its first temporary shape and permanent shape sequentially. In this paper, this approach is used where T₁ is 80 °C, T₃ is 40 °C and T₄ is 0 °C. It is emphasized that the cooling to T₄ in S2 and the heating to T₃ in S3 are necessary to distinguish the two separated phase transitions: in S2, epoxy is in the glassy state and PCL is in the semicrystalline state and in S3, PCL is still in the semicrystalline state but epoxy is in the rubbery state. The strain–temperature plots are shown in Section 4 with three different nominal stress pairs (P₁ = 0.1 MPa, P₂ = 0.3 MPa; P₁ = 0.15 MPa, P₂ = 0.45 MPa; P₁ = 0.2 MPa, P₂ = 0.6 MPa).

As reported by Luo and Mather, the triple-shape behavior can be achieved by a so-called “one-step-fixing” method. In order to better understand the mechanism on how to achieve two temporary shapes after a single fixing step, the material was tested by the “one-step-fixing” method. The material was stretched at a rate of 0.5 MPa min⁻¹ to 0.2 MPa at 80 °C and then cooled down to 0 °C at a rate of 2 °C min⁻¹, while maintaining the load; after quickly unloading at 0 °C, almost 100% strain was fixed. During heating, it is quite interesting that there is a strain plateau at ~40 to 60 °C, and at 80 °C, the material was able to completely recover to its permanent shape. In Section 4, we will show that three shapes can be observed: one at 0 °C, one at between 40 °C and 60 °C, and finally one at 80 °C.

3 Model description

3.1 Overall model

In this section, a one dimensional (1D) model is developed to capture the t-SME in the epoxy/PCL TSPCs and to clearly understand the mechanism of shape fixing, stress and strain energy distribution during a shape memory cycle. In this model, the matrix and the fiber network are treated as a homogenized system. The macroscopic behavior of the system depends on the two phases (the matrix and the fiber network). The matrix as an amorphous SMP undergoes the glass transition and the fiber network as the crystallizable polymer undergoes the crystal-melt transition. The fiber network is a liquid (melt) at high temperatures and an elastic solid at low temperature, where melts and crystals co-exist and their respective volume fractions depend on the temperature and their evolutions are described by the existing theory of crystallization. As the model is primarily focusing on the shape fixing mechanism, we do not seek a rigorous micromechanical description. In addition, the thermal expansion is not introduced for this 1D model, although it can be easily included.

For the TSPC system, the simplest model arranges stresses on the matrix and the fiber network in parallel (as shown in Fig. 4) and the total Cauchy stress σtotal is given by:

\[
\sigma_{\text{total}} = \nu_M \sigma_M + \nu_F \sigma_F, \quad (1a)
\]

where \(\sigma_M\) and \(\sigma_F\) are the stresses acting on the matrix and the fiber network, \(\nu_M\) and \(\nu_F\) are the volume fractions of the matrix and polymer crystallization. A significant hysteresis between the heating and the cooling traces are observed, especially between the melting at ~55 °C and the crystallization at ~30 °C. The major reason resulting in the significant hysteresis is due to the difference between the kinetics of crystallization and melting. For example, crystallization occurs only at temperatures below the crystallization temperature whilst melting only occurs at temperatures above the melting temperature. For polymers, the crystallization and melting temperatures are identical or very close to each other.
3.2 Viscoelastic behavior of the matrix

For the matrix, the modified SLS model is used to consider both equilibrium and nonequilibrium viscoelastic behaviors. The total stress on the matrix consists of contributions from both equilibrium and nonequilibrium behaviors:

$$\sigma^{\text{M}}(T,t) = \sigma^{\text{eq}}(T) + \sigma^{\text{non}}(T,t),$$ (2)

The Cauchy stress from the equilibrium response $\sigma^{\text{eq}}(T)$ follows the neo-Hookean model with entropic elasticity:

$$\sigma^{\text{eq}}(T) = NkT(\lambda^2 - 1)/\lambda,$$ (3)

where N is the crosslink density of the matrix, k is Boltzmann’s constant, T is the absolute temperature and λ is the stretch along the uniaxial load. $\lambda = 1 + \epsilon$ and ϵ is the strain. For the nonequilibrium response, the stress should be:

$$\sigma^{\text{non}}(T) = E_{\text{non}}\varepsilon_e(t),$$ (4)

where E_{non} is the Young’s Modulus and ε_e is the elastic strain of the nonequilibrium branch. Using the KWW stretched exponential and Boltzmann superposition principle, ε_e can be:

$$\varepsilon_e(t) = \frac{\partial}{\partial \tau} \exp \left[-\left(\frac{t}{\tau(T)}\right)^\beta\right] ds,$$ (5)

where ϵ is the total strain in the nonequilibrium $\varepsilon = \varepsilon_e + \varepsilon_v$, ε_v is the viscous strain, $\tau(T)$ is the temperature dependent stress relaxation time. β is a material parameter within a range between 0 and 1 characterizing the width of the stress relaxation distribution, i.e. a decrease of β leads to an increase of the stress relaxation breadth. Once β reaches 1, it is the narrowest stress relaxation time distribution and the nonequilibrium branch is reduced to the original Maxwell model. The temperature dependent stress relaxation time $\tau(T)$ is obtained using a shifting factor α_T:

$$\tau(T) = \alpha_T \tau_0,$$ (6)

where τ_0 is the stress relaxation time at a reference temperature. It was found that depending on whether the temperature is above and near or below T_p, the shifting factor α_T can be calculated by two different methods. For temperatures above and near T_p, the WLF (Williams–Landel–Ferry) equation is used:

$$\log \alpha_T = - \frac{C_1(T - T_i)}{C_2 + (T - T_i)},$$ (7)

where C_1 and C_2 are material constants, and T_i is a reference temperature. For temperatures below T_p, an Arrhenius-type behavior developed by Di Marzio and Yang (1997) is used:

$$\ln \alpha_T = - \frac{AF_c}{k} \left(\frac{1}{T} - \frac{1}{T_i} \right),$$ (8)

where A is the material constant, F_c is the configuration energy and k is Boltzmann’s constant.
3.3 Mechanical behavior of the fiber network

For the semicrystalline fiber network, crystallization and melting are functions of temperature and time. We adopt the postulation that when a small fraction of polymer crystals forms, it is in a stress-free state. However, in order to satisfy the boundary conditions, either overall or locally, this small fraction will deform immediately. This stress-free state for the newly formed crystalline phases was referred to as the natural stress-free state for the polymer crystals. The incremental stress in the fiber network is:

\[\sigma(t) = \int_{t_c}^{t} \dot{v}(s) \sigma^F \left[\lambda^C(t-s) \right] ds, \]

(9)

where \(t_c \) is the time point when crystallization starts; \(\lambda^C(t-s) \) is the stretch of the fiber crystals formed at \(t = s \) and \(\dot{v}(s) \) is the crystallinity of crystalline phases, which is a function of time and temperature and is discussed below; \(\sigma^F \) is the stress function for fiber crystals. For the sake of simplicity, it is simply assumed that the stress on fiber crystals follows neo-Hookean behavior and the Cauchy stress is:

\[\sigma^F = \mu_C (\lambda^2 - 1), \]

(10)

where \(\mu_C \) is the shear modulus of fiber crystals. The incremental description for stress on the fiber network during crystallization and melting was reported. To describe crystallization kinetics, a simplified Avrami’s phase transition theory is used. In polymer crystallization, the time–temperature dependent crystallinity of the polymer, \(\nu(T,t) \), can be expressed as:

\[\nu(T,t) = H_w \left[1 - \exp\left(-V(T,t) \right) \right], \]

(11)

where \(H_w \) is the saturated crystallinity of a polymer under a certain condition; for PCL network \(H_w \) is taken as 25% and \(V(T,t) \) is the volume fraction of crystalline phases without impingement. The calculation of \(V(T,t) \) during crystallization or melting was discussed in Ge et al.

3.4 Strain energies

Strain energies on the matrix and the fiber network were used to investigate the shape fixing mechanism. For the equilibrium branch of the matrix and individual fiber crystals, as both of them adopt the neo-Hookean constitution, the strain energy on the equilibrium branch of the matrix and individual fiber crystals is:

\[W = \pm \mu (I_1 - 3), \]

(12)

where \(\mu \) is the shear modulus and equal to \(NkT \) for the matrix and equal to \(\mu_C \) for fiber crystals; \(I_1 \) is the first deformation invariant, for the uniaxial loading case, \(I_1 = \lambda^2 + 2/\lambda \). The “\(+ \)” sign is used to distinguish tensile (+) or compressive (−) loading. For the strain energy of the fiber crystals, it follows:

\[W^F = \int_{t_c}^{t} \dot{v}(s) W(t-s)ds. \]

(13)

For the nonequilibrium branch of the matrix, the strain energy is given as follows:

\[W = \frac{1}{2} E_{non} \varepsilon_e^2, \]

(14)

where \(E_{non} \) is the Young’s Modulus and \(\varepsilon_e \) is the elastic strain of the nonequilibrium branch introduced in eqn (5).

4 Results

4.1 Parameter identification

In the model, there are 13 parameters in total (see Table 1). Except the volume fractions which are determined by fabrication \((\nu_m = 0.82 \text{ and } \nu_C = 0.18) \), rest of them were determined by uniaxial tension and stress relaxation experiments. Specifically, uniaxial tension tests were used to determine the crosslinking density \(N \) of the matrix (epoxy), shear modulus of fiber crystals (PCL), and stress concentration factors \(\gamma_M \) and \(\gamma_F \). Stress relaxation tests were used to identify the relaxation time \(\tau_0 \) at 16 °C, KWW stretching parameter \(\beta \), the Young’s modulus for nonequilibrium branch \(E_{non} \), and constants in WLF equation and Arrhenius behavior.

Fig. 5 shows the results from uniaxial tensile experiments of both the neat epoxy and TSPC at 80 °C (Fig. 5a) and at 40 °C (Fig. 5b). By fitting the experimental curve for the neat epoxy at 80 °C, the crosslinking density \(N \) was identified as \(3.84 \times 10^{-4} \text{ m}^{-3} \). For the TSPC at 80 °C, as the fiber network melts, \(\sigma^F = 0 \). Therefore, the total stress is:

\[\sigma^{total} = \gamma_M \nu_M NkT(\lambda^2 - 1/\lambda). \]

(15)

By fitting the TSPC curve at 80 °C (Fig. 5a), we obtained \(\gamma_M = 0.57 \) and \(\gamma_F = 2.94 \). For the TSPC at 40 °C, as the crystallization of PCL finishes before the test, the Cauchy stress follows:

\[\sigma^{total} = \gamma_M \nu_M NkT(\lambda^2 - 1/\lambda) + \gamma_F \nu_F H_w \mu_C (\lambda^2 - 1/\lambda). \]

(16)

In eqn (16), only the shear modulus \(\mu_C \) for PCL crystals is unknown and can be determined easily by fitting the uniaxial tension for TSPC at 40 °C. Fig. 5b shows the fitting result with \(\mu_C = 9.2 \text{ MPa} \).

Based on the time–temperature superposition principle, a relaxation master curve at 16 °C (Fig. 6a) can be achieved by shifting individual relaxation curves with shifting factors at different temperatures. The relaxation master curve can be described by a modified standard linear solid model with the KWW stretch exponential, where the stress relaxation modulus should be:

\[E(t) = E_0 + E_1 \exp \left[-\left(\frac{t}{\tau_0} \right)^\beta \right]. \]

(17)

In eqn (17), at time \(t = 0, E(0) = E_0 + E_1 \), and when \(t \) approaches \(\infty, E(\infty) = E_0 \). From Fig. 6a, we have \(E_0 = 8 \text{ MPa} \).
Table 1 List of material parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_M)</td>
<td>0.82</td>
<td>Volume fraction of the matrix (epoxy)</td>
</tr>
<tr>
<td>(\nu_F)</td>
<td>0.18</td>
<td>Volume fraction of the fiber network (PCL)</td>
</tr>
<tr>
<td>(\gamma_M)</td>
<td>0.57</td>
<td>Stress concentration factor of the matrix (epoxy)</td>
</tr>
<tr>
<td>(\gamma_F)</td>
<td>2.94</td>
<td>Stress concentration factor of the fiber network (PCL)</td>
</tr>
<tr>
<td>Epoxy matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>3.84 \times 10^{-21} m^{-3}</td>
<td>Polymer crosslinking density</td>
</tr>
<tr>
<td>(E_{non})</td>
<td>3150 MPa</td>
<td>Young’s modulus for the nonequilibrium branch</td>
</tr>
<tr>
<td>(\tau_0)</td>
<td>110 s</td>
<td>Relaxation time at 0 °C</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.3</td>
<td>KWW stretching parameter</td>
</tr>
<tr>
<td>(T_r)</td>
<td>16 °C</td>
<td>Reference temperature</td>
</tr>
<tr>
<td>(C_1)</td>
<td>24</td>
<td>WLF constant</td>
</tr>
<tr>
<td>(C_2)</td>
<td>50 °C</td>
<td>WLF constant</td>
</tr>
<tr>
<td>(AF/k)</td>
<td>−35 000 K</td>
<td>Pre-exponential parameter for Arrhenius-type behavior</td>
</tr>
<tr>
<td>PCL fiber network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_c)</td>
<td>9.2 MPa</td>
<td>Shear modulus for PCL crystals</td>
</tr>
</tbody>
</table>

Fig. 5 Model fitting for uniaxial loadings. (a) At 80 °C and (b) at 40 °C. (Blue circles represent the model fitting for the neat epoxy; red triangles represent the model fitting for the TSPC.)

Fig. 6 Model fitting for stress relaxation. (a) The stress relaxation master curve at 16 °C. (b) The shifting factors with temperature.

(\(E(\infty)\)) and \(E_1 = 1480\) MPa (\(E(0) - E_0\)). By considering the volume fraction and the stress concentration factor of the matrix, the Young’s modulus of the nonequilibrium branch is \(E_{non} = E_1/(1/\gamma_M + 1/\gamma_F)\) and therefore \(E_{non} = 3150\) MPa. Using eqn (17) to fit the stress relaxation master curve at 16 °C, parameters \(\tau_0\) and \(\beta\) are determined as 110 s and 0.3, respectively. As introduced in Section 3, the shifting factors as functions of temperature can be described by WLF and Arrhenius equations at different temperature ranges. By fitting shifting factors with these two equations (Fig. 6b), parameters in eqn (7) and (8) are determined as \(C_1 = 24, C_2 = 50\) °C, \(T_r = 16\) °C and \(AF/k = -35\ 000\ K\).

4.2 Comparison between model simulations and experiments

Using parameters in Table 1, the model successfully predicts the triple-shape memory behavior under three different nominal stress pairs \((P_1 = 0.1\ MPa, P_2 = 0.3\ MPa; P_1 = 0.15\ MPa, P_2 = 0.45\ MPa; P_1 = 0.2\ MPa, P_2 = 0.6\ MPa)\) (Fig. 7). It should be noted that these curves were not used for parameter identification. In Fig. 7, the model predictions show good agreement with experiments. The largest discrepancy occurs in S4 unloading to achieve the first temporary shape and in S8 heating back to ~40 °C to recover to the first temporary shape. Compared to the first temporary shape fixed in the experiments, a less temporary shape is fixed in predictions. We attribute this error primarily to the nonlinear deformation for the TSPC at 40 °C (Fig. 5b), which the neo-Hookean model for PCL crystals is unable to satisfactorily represent. At S8, the predictions reach the first temporary shape earlier than experiments, which is caused by the faster relaxation modulus in the model fitting (Fig. 6a).

The model also predicted the one-step-fixing shape memory behavior introduced in Section 2.4 with the 0.2 MPa imposed stress case (Fig. 8). Briefly, following high temperature deformation, then direct cooling to 0 °C and subsequent unloading, almost 100% strain was fixed. During continuous heating, recovery is interrupted as the strain reaches a plateau between \(T_{E_p}^{epoxy}\) and \(T_{E_p}^{PCL}\), and then completes as \(T_{E_p}^{PCL}\) is surpassed. In Fig. 8, the model prediction shows good agreement with the experiment, indicating that the essential physics are captured.

4.3 Stress and strain energy analyses for the triple-shape memory behavior

In order to better understand the mechanism of fixing temporary shapes, stress and strain energy analyses for the t-SME under the 0.15–0.45 MPa stress pair were investigated. Fig. 9a provides the thermomechanical loading history. Fig. 9b shows the variation of the strain as a function of time. In Fig. 9c and e, the total stress is divided into the stress acting on the matrix and the stress acting on the fiber network. At S1, all stress comes from the matrix since the fiber network (PCL) is in the melt state. In addition, because the matrix is in its rubbery state, the stress on the matrix mainly comes from the equilibrium branch; the stress on the nonequilibrium branch is almost zero due to the large viscous strain developed, indicating that the
The nonequilibrium branch is active for the subsequent shape memory effect. At S2 and S3, although crystals in the fiber network formed gradually, stress contribution from the fiber network is negligible due to small deformations on fiber crystals. At S4, after a quick unloading, the strain contracts ~50% (in S4 in Fig. 9b), which leads to a decrease of stress on the equilibrium branch of the matrix and the introduction of a compressive stress on the fiber network. Thus, the overall force balance is achieved and the total stress is zero. It is clear that the compressive stress on the fiber network prevents the matrix from returning to its stress-free (or initial) state. At S5 (the second loading), stresses on the matrix and the fiber network increase. At S6 (second cooling with holding a constant stress), stresses on the matrix and the fiber network stay constant. At S7 (unloading), stresses on the fiber network and on the equilibrium branch decrease slightly, but the stress on the nonequilibrium branch of the matrix changes quickly to a negative value, thus to prevent the material from recovery and maintain the force balance. At S8, during heating, viscosity on the nonequilibrium branch decreases, causing the decrease of the compressive stress on this branch. When the stress on the nonequilibrium branch decreases to zero, the material recovers to the first temporary shape and the stresses on the equilibrium branch and the fiber network return to the same values in S4. As the temperature is further increased to above the melting temperature, the stress on the fiber network starts to decrease;

Fig. 7 Model predictions for triple shape memory behaviors under three different nominal stress pairs. (a) $P_1 = 0.1$ MPa, $P_2 = 0.3$ MPa. (b) $P_1 = 0.15$ MPa, $P_2 = 0.45$ MPa. (c) $P_1 = 0.2$ MPa, $P_2 = 0.6$ MPa.

Fig. 8 Comparisons between model prediction and experimental result for the one-step-fixing shape memory behavior.
when fiber crystals completely melt, the material recovers to its initial shape. Fig. 9d and f show the variation of strain energy in the material. Comparing Fig. 9d and f, in S1, S2 and S3, the strain energy on the fiber network is nearly zero and most strain energy is from the equilibrium branch of the matrix. After the first unloading in S4, the strain energy on the equilibrium branch of the matrix drops and the strain energy on the fiber network is instantaneously generated to a negative value (due to compression). The energy release from the matrix is stored in the fiber crystals and a strain energy loss of ~3 kJ m⁻³ (corresponding to a 30% loss) is observed. At S5 (loading at 40 °C), the strain energies on both the matrix and the fiber network increase. At S6 (cooling to 0 °C), the strain energy on the matrix decreases slightly, but that on the fiber network remains nearly constant. Upon unloading in S7, the strain energies on the equilibrium branch and the fiber network change slightly by transferring the energy to the nonequilibrium branch in the form of compressive energy (~0.2 kJ m⁻³). During heating in S8, the strain energies stored on both the fiber network and the matrix decreases, and the strain energy on the nonequilibrium branch returns to zero when the material returns to the first temporary shape. Further heating the material to above its melting temperature, the energy stored in the second temporary shape is much higher than that stored in the first temporary shape. For the material studied here, the energy stored in the second temporary shape is 42.6 kJ m⁻³, which is 430% higher than that in the first temporary shape (8 kJ m⁻³).

4.4 Stress and strain energy analyses for the one-step-fixing shape memory behavior

Similarly to the triple-shape memory behavior, stress and strain energy analyses were investigated for the one-step-fixing shape memory behavior. Fig. 10a provides the thermomechanical
loading history. Fig. 10b shows the variation of the strain as a function of time. In Fig. 10c and e, the total stress is divided into the stress acting on the matrix and the stress acting on the fiber network. During the loading step, all stress comes from the matrix since the fiber network (PCL) is in the melt state. In addition, because the matrix is in its rubbery state, the stress on the matrix mainly comes from the equilibrium branch; the stress in the nonequilibrium branch is almost zero due to the large viscous strain developed, indicating that the nonequilibrium branch is active for the subsequent shape memory effect. In the cooling step, although crystals in the fiber network formed gradually, stress contribution from the fiber network is negligible due to small deformations on the fiber network. During unloading, stresses on the fiber network and on the equilibrium branch decrease slightly, but the stress on the nonequilibrium branch of the matrix changes quickly to a negative value, thus to prevent the material from recovery and maintain the force balance. During heating from 0 °C to ~40 °C, the viscosity on the nonequilibrium branch decreases, causing the decrease of the compressive stress on this branch. When the stress on the nonequilibrium branch decreases to zero, the material arrives at a strain plateau from ~40 °C to 60 °C (Fig. 10b) and the compressive stress on the fiber network maintains the force balance, which indicates that part of the strain is fixed by compressing the fiber crystals. As the temperature is further increased to exceed the melting temperature, the stress on the fiber network starts to decrease; when fiber crystals completely melt, the material recovers to its initial shape.

5 Conclusion

Triple-shape memory behaviors of TSPC were investigated in this paper. A 1D model was presented to describe the triple-shape memory behaviors. The model separately considers the glass transition and melt–crystal transition. This separate treatment allows the material parameters used in the model to be independently identified from experiments. With parameters identified from stress relaxation tests and uniaxial isothermal tension tests, the model is able to predict the triple-shape memory behaviors and the one-step-fixing shape memory behavior. The stress and strain energy analyses from the model revealed clearly the shape fixing mechanisms for TSPC. For the triple-shape memory behavior, the first temporary shape is fixed by fiber crystals and the second temporary shape is fixed by the nonequilibrium branch. For the one-step-fixing shape memory behavior, the temporary shape is firstly fixed by the nonequilibrium branch at low temperature as the matrix is in the glassy state. During heating, when the matrix transfers gradually from the glassy state to the rubbery state, the fiber network becomes deformed to fix a part of the temporary shape, which gives way to complete recovery upon further heating.

Acknowledgements

We gratefully acknowledge the support of an NSF CAREER award (CMMI-0645219), and an AFOSR grant (FA9550-09-1-0195; Dr B.-L. “Les” Lee, Program Manager).

References

5 T. Xie, Recent advances in polymer shape memory, Polymer, 2011, 52, 4985–5000.

